- JONES, D. S., PAUTLER, D. & COPPENS, P. (1972). Acta Cryst. A 28, 635–645.
- KUTOGLU, A. & HELLNER, E. (1978). Acta Cryst. B34, 1617–1623.
- MCIVER, J. W., COPPENS, P. & NOWAK, D. (1971). Chem. Phys. Lett. 11, 82–85.
- REES, B. (1976). Acta Cryst. A32, 483-488.

SCHERINGER, C. (1977a). Acta Cryst. A 33, 588-592.

- SCHERINGER, C. (1977b). Acta Cryst. A33, 426–429, 430–433.
- SCHERINGER, C., MULLEN, D. & HELLNER, E. (1978). Acta Cryst. A34. In the press.
- VERSCHOOR, G. C. & KEULEN, E. (1971). Acta Cryst. B27, 134-145.

Acta Cryst. (1978). B34, 2165-2168

4,5,10,11,12,13-Hexahydro-10,13a-methanocycloocta[c]pyrrolo[3,2,1-*ij*]quinoline-7,9,14-trione and Dimethyl 4,5,10,11,12,12a-Hexahydroindolo[1,7-cd]benzazepine-7,8-dicarboxylate

BY PATRICK J. ABBOTT, R. MORRIN ACHESON AND GARRY PROCTER

Department of Biochemistry, South Parks Road, Oxford OX1 3QU, England

AND DAVID J. WATKIN

Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, England

(Received 10 December 1977; accepted 14 January 1978)

The trione $C_{18}H_{15}NO_3$ is monoclinic, $P2_1/n$, with a = 7.340 (1), b = 11.647 (1), c = 16.100 (3) Å, $\gamma = 80.96$ (1)°, Z = 4, $D_m = 1.43$, $D_c = 1.432$ g cm⁻³, $\mu = 1.056$ cm⁻¹ (Mo Ka radiation). The diester $C_{20}H_{21}NO_4$ is triclinic, $P\overline{1}$, with a = 9.605 (2), b = 9.693 (2), c = 9.871 (3) Å, a = 100.49 (2), $\beta = 108.47$ (2), $\gamma = 99.34$ (2)°, Z = 2, $D_m = 1.39$, $D_c = 1.393$ g cm⁻³, $\mu = 0.99$ cm⁻¹ (Mo Ka radiation). The identification of these compounds by X-ray analysis has led to an understanding of the reaction between 1,2,6,7,8,9-hexahydropyrrolo] 3,2,1-*jk*] carbazole and dimethyl acetylenedicarboxylate in acetic acid.

Introduction

The synthesis and isolation of these compounds was carried out by Dr R. M. Letcher (Acheson, Letcher & Procter, 1978).

Precession photographs gave the space groups. The crystals were transferred to an Enraf-Nonius CAD-4 four-circle diffractometer, and cell dimensions determined by a least-squares fit to the setting angles of 25 reflections measured on both sides of the incident beam. The data were collected by an $\omega/2\theta$ scan, and standards checked every hour. Details of the data and R factors appear in Table 1. Lorentz and polarization corrections were applied. The structures were solved with MULTAN (Germain, Main & Woolfson, 1971), and refined by full-matrix least squares to R = R(1)with isotropic temperature factors. Further refinement with anisotropic thermal motion to R = R(2), followed by a difference synthesis, led to the location of all the H atoms [except for H(163) in the trione (IV) which was placed by calculation]. The structures were refined to

Table 1. Experimental data and R values

	Compound (IV)*†	Compound (V) [†]
Crystal dimensions (mm)	$0.3 \times 0.3 \times 0.4$	$0.4 \times 0.5 \times 0.8$
Crystallization solvent	Ethyl acetate	CH ₂ Cl ₂ /petrol
Radiation	ΜοKα	Μο ^Γ Κα
Maximum 2θ (°)	44	60
Total unique data	1561	3756
Data with $I \ge 3\sigma(I)$	1416	2974‡
R(1)	0.189	0.153
R(2)	0.088	0.048
Final R	0.035	0.046

Weighting scheme: $w = [a_0 t_0(x) + a_1 t_1(x) + ... + a_n t_n(x)]^{-1}$, where a_i are coefficients of a Chebyshev series in $t_i(x)$, $(x) = F_o/F_{(\text{max})}$.

Final parameters: (IV): $a_0 = 47.77$, $a_1 = 78.12$, $a_2 = 42.82$, $a_3 = 15.26$, $a_4 = 3.14$, $a_5 = 0.16$; (V): $a_0 = 71.10$, $a_1 = 97.10$, $a_2 = 27.53$.

* C-H distances constrained to be 1.00 ± 0.01 Å.

† An extinction correction was applied during the later refinements.

‡ In the final refinements, three reflections were omitted because they suffered excessive extinction.

Table	2.	Final atomic coordinates for the trione (I'
		with e.s.d.'s in parentheses

(V) Table 3. Final atomic coordinates for the diester (V) with e.s.d.'s in parentheses

(2)

(2) (2) (1)

(1)

(1)

(1)

-0.005 (3)

0.078(3)

0.100(3)

0.200(3)

0.087(3)

0.153(4)

	x	У	Z		x	у	z
C(1)	0.2309 (2)	0.8513 (2)	0.0960 (1)	C(1)	1.0790 (2)	0.0951 (2)	0.7583 (2
C(2)	0.2147 (3)	0.8296 (2)	0.0116 (1)	C(2)	0.9618(2)	0.1003 (2)	0.8104 (2
C(3)	0.2260 (3)	0.9156 (2)	-0.0467 (1)	C(3)	0.8494 (2)	0.1675 (2)	0.7483 (2
C(3a)	0.2505 (2)	1.0247 (2)	-0.0206 (1)	C(3a)	0.8570 (2)	0.2270 (2)	0.6335 (2
C(4)	0.2640 (3)	1.1350 (2)	-0.0667 (1)	C(4)	0.7501 (2)	0.3056 (2)	0.5516 (2
C(5)	0.2859 (3)	1.2242 (2)	0.0010(1)	C(5)	0·8014 (2)	0.3235 (2)	0.4240 (2
N(6)	0.2901 (2)	1.1579 (1)	0.07938 (9)	N(6)	0.9490 (1)	0.2841(1)	0.4577 (1
C(6a)	0.2664 (2)	1.0431 (2)	0.0635(1)	C(6a)	0.9756 (2)	0.2208(1)	0.5404 (2
C(7)	0.3447 (3)	1.1946 (2)	0.1525 (1)	C(7)	1.0270 (2)	0.2941(2)	0.3643 (2
C(7a)	0.3639 (2)	1.1050 (1)	0.2208 (1)	C(8)	1.1736 (2)	0.2888 (2)	0.3941 (2
C(8)	0.4601 (3)	1.1279 (2)	0.2873 (1)	C(8a)	1.2702 (2)	0.2796 (2)	0.5405 (2
C(9)	0.4907 (3)	1.0509 (2)	0.3590 (1)	C(9)	1.3927 (2)	0.3825 (2)	0.6241 (2
C(10)	0.4003 (3)	0.9434 (2)	0.3572 (1)	C(10)	1.4979 (2)	0.3793 (2)	0.7725 (2
C(11)	0.2037 (3)	0.9686 (2)	0-3949 (1)	C(11)	1.4418 (2)	0.2518(2)	0.8276 (2
C(12)	0.0749 (3)	1.0563 (2)	0.3438 (1)	C(12)	1.3620 (2)	0.1183(2)	0.7003 (2
C(13)	0.0749 (2)	1.0214 (2)	0.2530(1)	C(12a)	1.2228 (2)	0.1448(2)	0.5888 (2
C(13a)	0.2734 (2)	0.9961 (1)	0-2138 (1)	C(12b)	1.0917 (2)	0.1554 (2)	0.6423 (2
C(13b)	0.2594 (2)	0.9602 (1)	0.1241 (1)	C(13)	0.9294 (2)	0.3100 (2)	0.2157 (2
C(14)	0.3824 (2)	0.9036 (1)	0.2694 (1)	C(14)	0.8493 (2)	0.4791(2)	0.0833 (2
O(1)	0.3805 (2)	1.2927 (1)	0.1631 (1)	C(15)	1.2284 (2)	0.2736 (2)	0.2701 (2
O(2)	0.5821 (2)	1.0742 (1)	0.41789 (9)	C(16)	1.3936 (3)	0.1744(3)	0.1713 (2
O(3)	0.4429 (2)	0.8067(1)	0.24680 (9)	O (1)	0.8416(2)	0.2108(1)	0.1191 (1
H(11)	0.224 (2)	0.787(1)	0.1362 (9)	O(2)	0.9450(1)	0.4482(1)	0.2149 (1
H(21)	0.199 (3)	0.750 (1)	-0.005 (1)	O(3)	1.1722 (2)	0.3037 (2)	0.1550 (1
H(31)	0.219 (3)	0.899 (2)	-0.1071(6)	O(4)	1.3487(1)	0.2149(2)	0.2961 (1
H(41)	0.370 (2)	1.126 (2)	-0.106 (1)	H(11)	1.154(2)	0.050 (2)	0.802(2)
H(42)	0.152(2)	1.162 (2)	-0.101 (1)	H(21)	0.960(2)	0.058(2)	0.891(2)
H(51)	0.179 (2)	1.288 (1)	0.004 (1)	H(31)	0.767 (2)	0.173(2)	0.786(2)
H(52)	0.405 (2)	1.255 (2)	-0.001 (1)	H(41)	0.647 (3)	0.255 (3)	0.515(3)
H(81)	0.514 (2)	1.201 (1)	0.289 (1)	H(42)	0.758(2)	0.401(2)	0.619(2)
H(101)	0.476 (2)	0.881 (1)	0.390 (1)	H(51)	0.729 (3)	0.251 (3)	0.326 (3)
H(111)	0.214 (3)	0.997 (2)	0.4527 (7)	H(52)	0.814(2)	0.424(2)	0.413(2)
H(112)	0.155 (2)	0.894 (1)	0.394 (1)	H(91)	1.419 (2)	0.463 (2)	0.586 (2)
H(121)	0.111 (2)	1.135 (1)	0.348 (1)	H(101)	1.597 (2)	0.381(2)	0.768 (2)
H(122)	-0.054 (2)	1.063 (2)	0.366 (1)	H(102)	1.513 (3)	0.471(3)	0.847(3)
H(131)	0.002 (2)	1.084 (1)	0.219 (1)	H(111)	1.526 (3)	0.230 (2)	0.896 (3)
H(132)	0.024 (2)	0.947 (1)	0.247 (1)	H(112)	1.370 (2)	0.273(2)	0.879 (2)
				H(121)	1.332 (2)	0.032 (2)	0.737 (2)
				H(122)	1.426 (2)	0.059 (2)	0.650 (2)
				H(12a1)	1.183 (2)	0.062 (2)	0.498 (2)

convergence by blocked-matrix least squares. Tables 2, 3. 4 and 5 list the final atomic coordinates, bond distances, and bond angles.* The molecular geometries of the title compounds are shown in Figs. 1 and 2. All calculations were performed on the Oxford University Computing Laboratory's ICL 1906A computer with the CRYSTALS package (Carruthers, 1975).

Discussion

1,2,6,7,8,9-Hexahydropyrrolo[3,2,1-*jk*]carbazole **(I)** with dimethyl acetylenedicarboxylate in acetic acid gave four crystalline compounds, the structures of which could not be decided from their mass, UV, IR,

¹H NMR, and ¹³C NMR spectra (Acheson, Letcher & Procter, 1978). From our X-ray determinations two can be represented by (IV) and (V). Their formation from (I) necessitates the opening of the pyrrole ring, formally a hydrolysis of an enaminic system, to aminoketone derivatives such as (II) and (III). This is in effect the hydrolysis of an indole to the corresponding aminoketone, almost the reverse of the last stage of the Fischer indole synthesis (Acheson, 1976) and a very uncommon reaction. The hydrolysis of (I) to (II) can be attributed to the relief of the strain caused by the bridging ethano group (Blake, Tretter, Juhasz, Bonthrone & Rapoport, 1966). The trione (IV) could be formed from (III), and (V) from (II).

0.416(3)

0.444(3)

0.577 (3)

0.112(3)

0.112(3)

0.261(4)

0.857 (3)

0.746(3)

0.880 (3)

1.467(4)

1.307 (3)

1.437 (4)

H(141)

H(142)

H(143)

H(161)

H(162)

H(163)

^{*} Lists of structure factors and thermal parameters for both compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33360 (29 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 4. Interatomic distances (Å) with e.s.d.'s in parentheses

The trione (IV)*		The diester (V)†	
C(1)–C(2)	1-390 (3)	C(1) - C(2)	1.382 (3)
C(1) - C(13b)	1.392 (3)	C(1) - C(13b)	1.405(2)
C(1) - H(11)	0.996 (9)	C(1) - H(11)	0.938 (20)
C(2) - C(3)	1.385 (3)	C(2) - C(3)	1.385(3)
C(2) - H(21)	0.994 (9)	C(2) - H(21)	0.964(20)
C(3)-C(3a)	1.377 (3)	C(3) - C(3a)	1.378 (2)
C(3) - H(31)	0.994 (9)	C(3) - H(31)	0.978(2)
C(3a)-C(4)	1.500 (3)	C(3a) - C(4)	1.497 (2)
C(3a)-C(6a)	1.379 (3)	C(3a) - C(6a)	1.402(2)
C(4) - C(5)	1.530 (4)	C(4) - C(5)	1.518(3)
C(4)–H(41)	0.997 (9)	C(4) - H(41)	0.949(25)
C(4)-H(42)	0.996 (9)	C(4) - H(42)	1.016(22)
C(5) - N(6)	1.478 (3)	C(5) - N(6)	1.480(2)
C(5)-H(51)	0.995 (9)	C(5) - H(51)	1.043(24)
C(5)-H(52)	1.000 (9)	C(5) - H(52)	0.989(23)
N(6)–C(6a)	1.399 (2)	N(6)-C(6a)	1.426(2)
N(6)–C(7)	1.336 (2)	N(6)-C(7)	1.367(2)
C(6a)–C(13b)	1.379 (3)	C(6a) - C(12b)	1.399(2)
C(7)–C(7a)	1.507 (3)	C(7) - C(8)	1.356(2)
C(7)–O(1)	1.225(2)	C(7) - C(13)	1.520(2)
C(7a)C(8)	1.332 (3)	C(8) - C(8a)	1.477(2)
C(7a)–C(13a)	1.526 (2)	C(8) - C(15)	1.471(2)
C(8)–C(9)	1.458 (3)	C(8a) - C(9)	1.328(2)
C(8)–H(81)	0.992 (9)	C(8a) - C(12a)	1.521(2)
C(9)-C(10)	1.506 (3)	C(9) - C(10)	1.502(2)
C(9)–O(2)	1.217 (2)	C(9)-H(91)	0.961(19)
C(10) - C(11)	1.550 (3)	C(10) - C(11)	1.525(3)
C(10)–C(14)	1.500 (3)	C(10) - H(101)	0.962(21)
C(10)–H(101)	0.994 (9)	C(10) - H(102)	1.006 (24)
C(11) - C(12)	1.520 (3)	C(11) - C(12)	1.522(3)
C(11)–H(111)	0.994 (9)	C(11) - H(111)	0.959(23)
C(11)–H(112)	0.993 (9)	C(11) - H(112)	1.002(20)
C(12)C(13)	1.517 (3)	C(12) - C(12a)	1.532 (2)
C(12)-H(121)	0.999 (3)	C(12) - H(121)	1.010 (20)
C(12) - H(122)	1.000 (9)	C(12) - H(122)	0.939(20)
C(13) - C(13a)	1.573 (2)	C(12a) - C(12b)	1.523 (2)
C(13)–H(131)	0.997 (9)	C(12a)-H(12a1)	1.012 (18)
C(13)-H(132)	0.998 (9)	C(13)-O(1)	1.199 (2)
C(13a) - C(13b)	1.511 (2)	C(13)-O(2)	1.325 (2)
C(13a) - C(14)	1.528 (2)	C(14)-O(2)	1.448 (2)
C(14)–O(3)	1.202 (2)	C(15)-O(3)	1.205 (2)
		C(15)-O(4)	1.343 (2)
		C(16)-O(4)	1.440 (2)

* C-H distances constrained to 1.00 ± 0.01 Å.

[†] Ester methyl C-H distances in the range 0.910 (27)-1.014 (33) Å.

Fig. 1. Molecular geometry for the trione (IV) with H atoms omitted.

Fig. 2. Molecular geometry for the diester (V) with H atoms omitted.

The ¹³C NMR spectrum of (IV) shows one CH_2 resonance at surprisingly high field, $16 \cdot 7\delta$, ca 10 p.p.m. higher than the methylene C atoms of cyclohexanone (Johnson & Jankowski, 1972). This resonance is assigned to C(12), since this atom is unique in being joined by short bonds to both neighbouring C atoms. Such upfield shifts have been observed (Wehrli & Wirthlin, 1976) in systems with short non-bonded $H \cdots H$ interactions, but these are absent in (IV).

Table 5. Bond angles (°) with e.s.d.'s in parentheses (H atoms have been omitted)

The trione (IV)					
$\begin{array}{c} C(2)-C(1)-C(13b)\\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(3a)\\ C(3)-C(3a)-C(4)\\ C(3)-C(3a)-C(6a)\\ C(4)-C(3a)-C(6a)\\ C(3a)-C(4)-C(5)\\ C(4)-C(5)-N(6)\\ C(5)-N(6)-C(6a)\\ C(5)-N(6)-C(7)\\ C(6a)-N(6)-C(7)\\ C(6a)-N(6)-C(7)\\ N(6)-C(7)-C(7a)\\ N(6)-C(7)-C(7a)\\ N(6)-C(7)-C(1a)\\ N(6)-C(1a)\\ N(6)-C(1a)\\ N(6)-C(1a)\\ N(6)-C(1a)\\ N($	120.80 (19) 121.00 (20) 119.42 (18) 132.45 (19) 109.55 (19) 104.91 (19) 104.44 (17) 110.33 (16) 124.70 (16) 123.75 (15) 114.96 (15) 122.75 (18) 123.75 (18)	$\begin{array}{c} C(7a)-C(7)-O(1)\\ C(7)-C(7a)-C(8)\\ C(7)-C(7a)-C(13a)\\ C(8)-C(7a)-C(13)\\ C(7a)-C(8)-C(9)\\ C(8)-C(9)-C(10)\\ C(8)-C(9)-C(10)\\ C(8)-C(9)-O(2)\\ C(10)-C(9)-O(2)\\ C(9)-C(19)-C(11)\\ C(9)-C(10)-C(14)\\ C(11)-C(10)-C(14)\\ C(10)-C(11)-C(12)\\ C(11)-C(12)-C(13)\\ \end{array}$	$122 \cdot 27 (18)$ $116 \cdot 26 (16)$ $121 \cdot 04 (15)$ $122 \cdot 69 (17)$ $123 \cdot 23 (18)$ $116 \cdot 82 (16)$ $121 \cdot 11 (19)$ $122 \cdot 06 (19)$ $110 \cdot 72 (16)$ $110 \cdot 29 (15)$ $107 \cdot 64 (15)$ $112 \cdot 20 (15)$ $111 \cdot 57 (15)$	$\begin{array}{c} C(12)-C(13)-C(13a)\\ C(7a)-C(13a)-C(13)\\ C(7a)-C(13a)-C(13)\\ C(7a)-C(13a)-C(13b)\\ C(13)-C(13a)-C(14)\\ C(13)-C(13a)-C(14)\\ C(13b)-C(13a)-C(14)\\ C(13b)-C(13b)-C(6a)\\ C(1)-C(13b)-C(13)\\ C(6a)-C(13b)-C(13a)\\ C(10)-C(14)-C(13a)\\ C(10)-C(14)-C(13a)\\ C(10)-C(14)-C(3)\\ C(13)-C(14)-C(3)\\ \end{array}$	$\begin{array}{c} 113.44\ (15)\\ 109.04\ (13)\\ 111.02\ (14)\\ 107.14\ (14)\\ 109.53\ (14)\\ 105.30\ (14)\\ 114.56\ (14)\\ 115.79\ (16)\\ 126.08\ (16)\\ 118.06\ (15)\\ 113.31\ (15)\\ 122.59\ (17)\\ 124.04\ (17)\\ \end{array}$
The diester (V)	122 73 (10)				12:0:(1)
$\begin{array}{l} C(2)-C(1)-C(12b)\\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(3a)\\ C(3)-C(3a)-C(4)\\ C(3)-C(3a)-C(6a)\\ C(4)-C(3a)-C(6a)\\ C(3a)-C(4)-C(5)\\ C(4)-C(5)-N(6)\\ C(5)-N(6)-C(7)\\ C(5)-N(6)-C(7)\\ C(5a)-N(6)-C(7)\\ C(3a)-C(6a)-N(6)\\ C(3a)-C(6a)-C(12b)\\ N(6)-C(12b)\\ N(6)-C(1$	$123 \cdot 23 (16) \\120 \cdot 16 (15) \\118 \cdot 48 (16) \\127 \cdot 67 (15) \\121 \cdot 16 (15) \\111 \cdot 16 (14) \\103 \cdot 48 (13) \\106 \cdot 00 (14) \\109 \cdot 60 (12) \\119 \cdot 85 (13) \\129 \cdot 97 (12) \\108 \cdot 38 (13) \\121 \cdot 59 (13) \\129 \cdot 99 (13) \\129 $	$\begin{array}{c} N(6)-C(7)-C(8)\\ N(6)-C(7)-C(13)\\ C(8)-C(7)-C(13)\\ C(7)-C(8)-C(8a)\\ C(7)-C(8)-C(15)\\ C(8a)-C(8)-C(15)\\ C(8)-C(8a)-C(9)\\ C(8)-C(8a)-C(12a)\\ C(9)-C(8a)-C(12a)\\ C(9)-C(8a)-C(10)\\ C(9)-C(10)-C(11)\\ C(10)-C(11)-C(12)\\ C(11)-C(12)-C(12a)\\ C(8a)-C(12a)-C(12a)\\ C(8a)-C(12a)-C(12a)\\ C(8a)-C(12a)-C(12a)\\ C(8a)-C(12a)-C(12a)\\ C(12a)-C(12a)-C(12a)\\ C(12a)-C(12a)\\ C(12a)-C(12a)-C(12a)\\ C(12a)-C(12a)\\ C(12a)$	$126.02 (13) \\112.29 (12) \\121.68 (13) \\121.65 (13) \\120.44 (13) \\120.44 (13) \\121.71 (13) \\116.23 (12) \\122.05 (13) \\124.72 (15) \\113.14 (14) \\110.79 (14) \\108.68 (13) \\$	$\begin{array}{c} C(8a)-C(12a)-C(12b)\\ C(12)-C(12a)-C(12b)\\ C(1)-C(12b)-C(12a)\\ C(1)-C(12b)-C(12a)\\ C(6a)-C(12b)-C(12a)\\ C(7)-C(13)-O(1)\\ C(7)-C(13)-O(2)\\ O(1)-C(13)-O(2)\\ C(8)-C(15)-O(3)\\ C(8)-C(15)-O(4)\\ O(3)-C(15)-O(4)\\ C(13)-O(2)-C(14)\\ C(15)-O(4)-C(16)\\ \end{array}$	$\begin{array}{c} 110\cdot 57\ (12)\\ 114\cdot 92\ (13)\\ 115\cdot 37\ (14)\\ 120\cdot 75\ (13)\\ 123\cdot 87\ (12)\\ 123\cdot 65\ (14)\\ 110\cdot 42\ (12)\\ 125\cdot 62\ (14)\\ 125\cdot 93\ (15)\\ 111\cdot 98\ (12)\\ 122\cdot 03\ (15)\\ 116\cdot 09\ (13)\\ 115\cdot 29\ (14) \end{array}$

Table 6. Deviations from the best plane (Å) for the
diester (V)

C(5)	-0.16	C(7)	0.04	C(16)	-0.38
N(6)	-0.02	C(8)	0.42	O(3)	-0.01
C(6a)	-0.14	C(15)	0.17	O(4)	0.08

In (V), the system N(6), C(7), C(8), C(15), and O(3) cannot be planar (Acheson, Procter & Critchley, 1977) because of the molecular geometry (Table 6). However, significant charge delocalization as shown is indicated by the following. The N atom is only 0.06 Å out of the plane defined by N(6), C(5), C(6a), and C(7) and the $8-CO_2$ plane subtends only 20.2° with this plane. N(6)-C(7) is much shorter than the other bonds from the N atom; C(7)-C(8) is long for a double bond and C(8)-C(15) is significantly shorter than C(7)-C(13). The resonance position of C(8) in the ¹³C NMR spectrum (108.9 δ) is at high field showing increased electron density. Investigations concerning the formation and properties of (IV) and (V) will be presented later. We thank the SRC for a studentship (GP).

References

- ACHESON, R. M. (1976). Introduction to the Chemistry of Heterocyclic Compounds, 3rd ed., p. 206. New York: Wiley-Interscience.
- ACHESON, R. M., LETCHER, R. M. & PROCTER, G. (1978). J. Chem. Soc. Perkin Trans. 1. To be published.
- Acheson, R. M., PROCTER, G. & CRITCHLEY, S. R. (1977). Acta Cryst. B33, 916–918.
- BLAKE, J., TRETTER, J. R., JUHASZ, G. J., BONTHRONE, W. & RAPOPORT, H. (1966). J. Am. Chem. Soc. 88, 4061–4068.
- CARRUTHERS, J. R. (1975). CRYSTALS User Manual. Oxford Univ. Computing Laboratory.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- JOHNSON, L. F. & JANKOWSKI, W. C. (1972). Carbon-13 NMR Spectra (spectrum No. 179). New York: Wiley-Interscience.
- WEHRLI, F. W. & WIRTHLIN, T. (1976). Interpretation of Carbon-13 NMR Spectra, p. 29. London: Heyden.